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Abstract. An instrument based on 20 m open-path incoherent broadband cavity-enhanced absorption spectroscopy 

(IBBCEAS) was established at the Jülich SAPHIR chamber in Spring 2011. The setup was optimized for the detection of 

HONO and NO2 in the near UV region 352-386 nm, utilizing a bright hot-spot Xe-arc lamp and a UV-enhanced CCD detector. 

A 2 detection limit of 26 pptv for HONO and 76 pptv for NO2 was achieved for an integration time of 1 min. Methacrolein 

has also been detected at mixing ratios below 5 ppbv. The IBBCEAS instrument’s performance for HONO and NO2 detection 20 

was compared to that of extractive wet techniques, long-path absorption photometry (LOPAP) and chemiluminescence 

spectrometry (CLS) NOX detection, respectively. 

1 Introduction  

Photolysis of nitrous acid (HONO + h (< 400 nm  OH + NO) leads to the formation of the most important daytime 

oxidant in the atmosphere, the hydroxyl radical (OH). Thus HONO indirectly affects the oxidative potential of the troposphere 25 

and strongly influences degradation mechanisms of a vast variety of natural and urban pollutants. The mechanisms of HONO 

formation in the troposphere are still not fully understood (Calvert et al. 1994, Finlayson-Pitts et al. 2003, Ramazan et al. 2004, 

Liu et al. 2019). Many atmospheric studies revealed elevated HONO mixing ratios during daytime under specific conditions 

that cannot be fully explained (Staffelbach et al. 1997, Zhou et al. 2002a, Zhou et al. 2003, Kleffmann et al. 2003, Vogel et al. 

2003, Kleffmann et al. 2005, Acker et al. 2006, Spataro and Ianniello, 2014). Although there appears to be general agreement 30 

that heterogeneous NO2 chemistry is one of the most important sources of HONO (Harrison et al. 1994, Reisinger 2000), 
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modelled HONO mixing ratios are often significantly below observed values (Vogel et al. 2003, Lammel and Cape 1996). 

However, other sources have also been suggested (Stemmler et al. 2006, Li et al. 2012, 2014). Since the photochemistry of 

HONO is closely connected to that of NO2  (Johnston et al. 1974, Aumont et al. 2003, Bröske et al. 2003, Ramazan et al. 

2004), the in situ measurement of time-dependent HONO and NO2 mixing ratios by monitoring both species simultaneously 35 

is particularly interesting to elucidate the natural formation processes of HONO (Kleffmann 2003). One reason for the 

indeterminate formation and atmospheric role of HONO is the challenge to accurately and reliably quantify this species.  

A direct spectroscopic way to detect HONO is through its electronic absorption in the near UV between 320 and 390 nm (Stutz 

et al. 2000), or through its IR active vibrational modes (Barney et al. 2000), e.g. in the Q-branches of trans-HONO at 1263 cm-

1 (3) or 790 cm-1 (4). The cross-sections in both cases are approximately between ~2 and 6  10-19 cm2/molecule. The UV 40 

region has been extensively exploited in differential optical absorption spectroscopy (DOAS) (Febo et al. 1996, Alicke et al. 

2003, Stutz et al. 2010), but more recently also using cavity enhanced methodologies (Wang and Zhang 2000, Djehiche et al. 

2011, Jain et al. 2011), especially incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) (Gherman et 

al. 2008, Hoch et al. 2012, Wu et al. 2012, Donaldson et al. 2014, Scharko et al. 2014, Min et al. 2016, Nakashima and 

Sadanaga 2017, Duan et al. 2018, Jordan and Osthoff 2020, and Yi et al. 2021). The mid-IR was targeted using Fourier 45 

transform (Hanst et al. 1982) and tuneable diode laser spectroscopy (TDLAS) (Schiller et al. 2001). Laser-induced fluorescence 

(LIF) can also be used for sensitive HONO detection, but only through the emission of OH radicals that are formed after 

HONO photolysis (Rodgers and Davis 1989, Liao et al. 2006, Bottorff et al. 2021). 

Most non-spectroscopic (indirect) detection methods are chemical in nature. Typical approaches comprise dry (Ferm and 

Sjödin 1985), and wetted effluent diffusion (Simon and Dasgupta 1995, Acker et al. 2006), or rotated (Oms et al. 1996, Spindler 50 

et al. 2003) denuders, HPLC/fluorescence methods (Huang et al. 2002, Takenaka et al. 2004, Beine et al. 2005), or long path 

absorption photometry (LOPAP) (Heland et al. 2001, Kleffmann et al. 2002). The corresponding instrumentation is generally 

more sensitive than spectroscopic methods, but at the same time also more susceptible to chemical interferences that can affect 

the selectivity and quantification of HONO (Beine et al. 2005, Kleffmann et al. 2006). In most of the chemical methods HONO 

is sampled on humid or liquid surfaces where heterogeneous chemistry can affect HONO mixing ratios in the presence of 55 

specific interfering chemicals (Ferm et al. 1985, Spindler et al. 2003, Zhou et al. 2003, Gherman et al. 2008). Moreover, 

photolytic or heterogeneous formation of HONO in sampling lines are known to cause unreliable results in in situ 

measurements (Zhou et al. 2002a, 2002b, Rohrer et al. 2005). Therefore for studies aiming at HONO detection it is essential 

to compare the performance of instruments that use genuinely different approaches (Kleffmann 2007). E.g. validation studies 

of denuder based approaches against DOAS measurements illustrated that significant discrepancies exist for 60 

daylight/illuminated conditions (Kleffmann 2007). DOAS was also compared with the LOPAP approach and several reasons 

for systematic differences in the acquired data were identified (Kleffmann et al. 2006).  
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A long open-path broad-band cavity enhanced absorption instrument was set up at the SAPHIR 1  chamber at 

Forschungszentrum Jülich (Germany) in 2011, utilizing an incoherent short-arc Xe lamp as a light source (cf. Fiedler et al. 

2003, Varma et al. 2009). Results of measurements to characterize its performance in the near UV through the in situ detection 65 

of HONO and NO2, as well as methacrolein (MACR) are presented here. Similar to the recent work by Yi et al. 2021 our 

objectives in 2011 were (i) to assess the instrument’s performance concerning HONO detection and validate it with the LOPAP 

system available at SAPHIR, and (ii) to compare its performance concerning NO2 detection with the local SAPHIR 

chemiluminescence spectrometry (CLS) NOX detector.   

   Section 2 outlines details on the experimental setup at SAPHIR in Jülich. Section 3 shows measurements of  HONO, 70 

NO2 and MACR mixing ratio using the IBBCEAS instrument. The data are respectively compared with results from different 

instruments at SAPHIR: (a) a LOPAP system (HONO), (b) a standardized chemiluminescence detector (NO2), and (c) a proton-

transfer reaction mass spectrometer (PTRMS) (MACR). Correlation plots between individual measurements will be discussed 

for three measurement days in Summer and Autumn 2011. The experiments presented here supplement a campaign on the 

"Formal Intercomparison of Observations of Nitrous Acid" (FIONA) (Rodenas et al. 2013), where instruments for the detection 75 

of HONO were compared at the EUPHORE simulation chambers in Valencia (Spain) in May 2009. 

2 Experiment 

IBBCEAS has been used for the detection of a variety of target species in different wavelength regions in the laboratory 

(Langridge et al. 2006, Washenfelder et al. 2008, Dixneuf et al. 2009, Thalman and Volkamer 2010, Wu et al. 2009, Nakashima 

and Sadanaga 2017, Duan et al. 2018) and in outdoor environments (Bitter et al. 2005, Saiz-Lopez et al. 2006, Leigh et al. 80 

2010, Wu et al. 2012). The high sensitivity and spatial resolution of open-path IBBCEAS make this approach particularly 

attractive for applications in atmospheric simulation chambers (Varma et al. 2009, Fuchs et al. 2010, Chen et al. 2011, Ashu-

Ayem et al. 2012, Hoch et al. 2012, Dorn et al. 2013, Rodenas et al. 2013). Thus an open-path IBBCEAS instrument was 

developed at the Jülich SAPHIR chamber, a facility designed for the simulation of tropospheric scenarios at realistically low 

mixing ratios of relevant trace species. The SAPHIR chamber is an ideal testbed for open-path IBBCEAS due to the available 85 

comprehensive suite of standard detection methods that can be used to assess and validate the data taken with IBBCEAS. For 

the experiments presented here the IBBCEAS instrument was optimized for the near-UV detection of HONO (352-386 nm), 

whose identification was based on three prominent absorption bands peaking at 354, 368 and 384 nm (Stutz et al. 2000). 

The spectral region covered also enabled the simultaneous detection of NO2 and methacrolein.  

The experimental design of the IBBCEAS instrument was similar to the one described in Refs. (Varma et al. 2009, Dorn et al. 90 

2013, Varma et al. 2013). It comprised a transmitter and a receiver unit, each housing one of the cavity mirrors. A sketch of 

the optical setup and details on experimental components are shown in Figures S1-S3 in the supplementary material. The 

                                                           
1 SAPHIR = Simulation of Atmospheric PHotochemistry In a large Reaction chamber)  
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transmitter unit was mounted on a concrete platform at the north end of SAPHIR (facing south). The receiver unit was located 

at the south end of SAPHIR (facing north), in order to minimize exposure of the detector to potential daytime stray light. The 

dielectric mirrors (r = –21 m, R ~ 0.999, diameter = 40 mm, Layertec GmbH) inside the mechanically stable units formed an 95 

optical cavity with a mirror separation of ~20.4 m. Each unit was temperature stabilized with an air-to-air thermoelectric 

assembly (Laird Technologies). Vertical metal plates with optical ports (Figure S3) were rigidly mounted to the concrete 

support and formed the interface between the instrument's units and the chamber. Pipes connected to the two units extended 

into the SAPHIR chamber through the optical ports. Due to the use of the vertical plates (sealed by o-rings) the mechanical 

stress of the chamber's teflon wall was not imposed directly on the two optical units, which essentially decoupled the instrument 100 

from the chamber wall and improved its long-term stability. Each unit had two ports: one pipe with 50 mm diameter and 

another one with 25 mm. In each unit the wider pipe was aligned along the optical axis of the cavity reducing the contribution 

of stray light to the measured signal in the receiver unit. The pipes were sealed with a high reflectivity mirror at one end and 

purged with zero air at a flow rate of 1.7 dm3 min–1 during measurements to protect the mirror. The narrower pipe, which was 

sealed off during normal use of the instrument, was only used as a port for a green alignment laser (see Figure S1). The main 105 

light source was a short-arc Xe lamp running in "hot-spot" mode. In this mode, a small plasma spot (~150 μm diameter) with 

a spectral radiance of 18 W cm−2 sr−1 nm−1 at 400 nm was formed close to the cathode surface, improving the imaging properties 

of the discharge in comparison to conventional diffuse arcs. Small random jumps of the arc position, however, required an 

active stabilization of the beam direction by means of a quadrant detector. When the spot "jumped" to a specific quadrant an 

actively controlled piezo-driven Al-mirror was used to minimise the resulting beam deviation from the optical axis of the 110 

CEAS instrument. A telescope imaged the incoherent light into the optically stable cavity whose mirrors were aligned by two 

remote-controlled high resolution positioning motors per mirror. The light transmitted by the cavity was collected by a UV-

enhanced Al-mirror and focused onto the aperture of a circular-to-rectangular fiber bundle which guided the light onto the 

entrance slit (25 m) of a (Shamrock 303i) spectrograph (f = 303mm, F/4) supplied with a 1200 grooves/mm holographic 

grating. The light transmitted by the spectrograph was imaged onto a CCD detector cooled to –65°C. Light outside the high 115 

reflectivity range of the cavity mirrors was optically filtered by means of a band-pass filter to avoid excessive scattering into 

the spectrometer and the potential saturation of the detector. The wavelength range from 352 to 386 nm was covered with a 

spectral resolution of ~0.24 nm. A sample of transmission spectra can be found in the supplementary material (Figure S4). 

2.1 Measurement Procedure 

After overnight flushing of the chamber with dry synthetic air (also referred to as “zero air” in this publication) the cavity 120 

transmission, I0(), was measured every morning in the dark chamber before experiments commenced. Typically 300 cavity 

transmission spectra with an individual acquisition time of 200 ms were accumulated during experiments, yielding a time 

resolution of 1 min per measured spectrum I(). The extinction coefficient () [cm–1] was calculated according to (the left 

part of) Eq. (1): 

 125 
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𝜀(λ) =
1 − 𝑅eff(λ)

𝑑
(

𝐼0(λ)

𝐼(λ)
− 1) = 𝑎0 + 𝑎1λ + 𝑎2λ2 + 𝑎3λ3 + 𝑎4λ4 + ∑ 𝑛iσi(λ)

𝑁

i=1

                              (1) 

where Reff represents the wavelength dependent effective reflectivity of the cavity mirrors and d = 19.57 m the interaction path 

length per pass in the cavity (d equals the mirror separation minus the length corresponding to the mirror purge volume, see 

supplementary material, Figure S1). (1 – Reff) comprises all effective optical losses of the cavity when filled with zero air after 130 

purging the chamber overnight; i.e. mirror reflectivity losses, Rayleigh (and potentially) Mie scattering losses, diffraction 

losses. The spatial average of the number density ni [molecule cm–3] of the absorbing species i (= HONO, NO2 and MACR) 

was retrieved by fitting the function on the right hand side in Eq. (1) to the measured extinction coefficient. i[cm2 molecule–

1] represent the absorption cross-sections of species i. The cross-sections for HONO  (Stutz et al. 2000), NO2 (Mérienne et al. 

1995) and MACR (Meller et al. 1990) were converted to the spectral resolution of the spectrometer using home-made Gaussian 135 

convolution software written in Fortran. The five fit parameters aj (j = 0...4) in Eq. (1) belong to a fourth-order polynomial, 

accounting for unspecified additional losses, such as background featureless absorption, or Rayleigh and Mie scattering that 

may become relevant over time. The fitting procedure was based on least squares minimization using a singular value 

decomposition (SVD) procedure (Press et al. 1986, Varma et al. 2009) in order to eliminate biases of the fit due to parameter 

correlations. During a first test run of the SVD approach the wavelength of all cross-section reference spectra were individually 140 

shifted to further minimize the least square sum, and the optimized wavelengths were subsequently used in SVD analyses. For 

all reference spectra the typical shift was ≈0.10  0.05 nm and thus within the spectral resolution of the measurement. The 

absolute wavelength (e.g. used in Fig. 4) was calibrated with a low-pressure neon pen ray lamp. Reflectivity calibration issues 

will be discussed in the section 4. 

2.2 The LOPAP Instrument 145 

The LOPAP instrument used in this study has been described in detail by Häseler et al. 2009 and Li et al. 2014 in the context 

of several campaigns on airborne detection of HONO aboard a Zeppelin airship. Air is extracted through two sampling coils 

in series where HONO is stripped into the liquid phase. In both coils the air is exposed to equal flows of a solution (0.06 M 

sulphanilamide in 1 M HCl solution) in which HONO almost instantaneously reacts to forms a diazonium salt. While the first 

coil removes HONO nearly quantitatively from the gas phase, only a fraction of other chemically interfering species are 150 

scrubbed. The second coil, however, samples that fraction of interfering species but only the remaining small amount of 

HONO. Using the difference of the signals derived from the two coils enables the influence of interfering species to be 

accounted for. The air is then separated from the liquid and the solutions are separately transferred into two mixing volumes, 

where a 0.8 mM solution of N-(1-naphthyl)ethylenediamine-dihydrochloride is added to generate an azodye. The azodye’s 

concentration is then determined by its optical absorption to determine HONO mixing ratios. The absorption cells for both 155 
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channels consist of long length teflon tubing, acting as a liquid core waveguide (LCW). Visible light is sent through the tubing 

and detected by two small spectrometers.  

The entire instrument was housed in a compact 19” rack (56(w) × 60(d) × 100(h) cm3) consisting of two “chemistry” units and 

one “electronics/detection unit”. In order to avoid sampling artefacts in inlet lines the sampling unit was straightforwardly 

mounted inside SAHPIR about 0.3 m from the chamber wall at the north end and 1 m above the floor. The instrument's 160 

sampling frequency, time resolution, 3 detection limit, 1 precision, and accuracy of the instrument was 0.33 Hz, 4-5 min, 

10 pptv, 3 pptv, and 12 %, respectively. The measurement range of the instrument can in principle be varied by the length of 

the absorption tubes and by the use of different absorption wavelengths for the evaluation. In this study we used an optical 

path length of 2.9 m. 

2.3 Chemiluminescence Spectrometry NOX Detector 165 

The NOX detector was located in a container underneath the chamber from where gas mixtures were sampled at a flow rate of 

1 dm3 min–1 through a teflon tube of ca. 6 m length (internal diameter 4 mm) corresponding to an approximate residence time 

of 1 s. NO2 was converted to NO by a pulsed LED photolytic converter at 3958 nm (Droplet Measurement Technologies, 

BLC) in a volume of 17 ml with a conversion efficiency of approximately 50%. The LED in the converter was consecutively 

switched on and off to alternately determine NO and NOX concentrations. NO was detected by a customized CLS detector 170 

(Eco Physics TR 780 (Rohrer and Brüning 1992, Fuchs et al. 2010). NO2 mixing ratios were calculated using an interpolated 

value between two subsequent NOX measurements at a time when NO mixing ratio were measured. The instrument was 

calibrated using NO standard gas mixtures (2 ppmv NO in N2, BOC-Linde) and gas phase titration for NO2. 

The fact that besides NO2 also HONO is photolysed at 395 nm to yield NO was accounted for by determining the corresponding 

NO yield from HONO numerically from the spectrum of the LEDs. The HONO photolysis contribution to NO is less than 5% 175 

compared to that of NO2. The 1 accuracy of the chemiluminescence detector for NO2 was determined to be ±7%, based on 

the uncertainty of ±5% of the NO standard used for the calibration and a ±5% uncertainty for the NO2 conversion efficiency. 

The known interference of 5% towards HONO is not corrected in the final dataset and not included in this accuracy estimate. 

2.4 Proton Transfer Reaction – Mass Spectrometry (PTRMS) 

PTRMS was utilized to monitor methacrolein in the presence of HONO and NO2. Generally the PTRMS technique relies on 180 

soft chemical ionization to detect gaseous trace components. The target species are converted to product ions through the 

transfer of a proton from the reagent ion, H3O+. The trace gases (X) are identified through the mass of the product ions usually 

being the protonated molecular mass (XH+): H3O+ + X  XH+ + H2O.  The PTRMS instruments applied here was a quadrupole 

mass spectrometer system (PTR-Quad-MSThe system features a switchable reagent ion source with H3O+, NO+ and O2
+ as 

precursor ions for the measurement and identification of a number of trace gases. Details on the PTRMS instrument were 185 

published earlier by Wisthaler et al. 2008.  
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3 Results 

Measurements of time-dependent mixing ratios of HONO, NO2 and MACR using open-path IBBCEAS were taken during 

Summer and Autumn 2011, and compared with those utilizing long-path absorption photometry (LOPAP), chemiluminescence 

spectrometry (CLS) and proton transfer reaction mass spectrometry (PTRMS), respectively. The performance intercomparison 190 

study is exemplified on basis of measurements on the 11th of July and on the 5th & 6th of October 2011, when different photo-

chemical scenarios were simulated. The measurements in July were carried out as part of a Jülich internal photochemistry 

campaign (6th June to 15th July 2011), whose goal was to study the oxidation of isoprene (H2C=C(CH3)-CH=CH2), 

methacrolein CH2=C(CH3)–CHO or methyl vinyl ketone (CH3-C(O)-CH=CH2) by hydroxyl (OH) radicals at low NOX mixing 

ratios (Nehr et al. 2014, Fuchs et al. 2014). In contrast, the measurements in October were specifically designed for a 195 

comparison between LOPAP and IBBCEAS under well controlled low concentration conditions with no obvious potential 

chemical interferences disturbing the LOPAP instrument. Generally, after cleaning and humidifying the SAPHIR chamber 

HONO formation by unknown photo-induced reactions on the Teflon chamber walls and degradation was studied in 

experiments always including light-induced and dark reactions of HONO formation or destruction – the experimental protocols 

concerning changes in chamber conditions are given in the figure captions. The results obtained on the three days will be 200 

outlined in chronological order. The performance of the open-path IBBCEAS instrument will subsequently be discussed in the 

context of the different measurement condition and atmospheric scenarios together with that of the Jülich LOPAP instrument. 

Figure 1 

3.1 Measurements on 11 July 2011 

Figure 1 (left panels) summarizes the time-dependent measurements of mixing ratios of HONO, NO2 and MACR as determined 205 

by IBBCEAS (black symbols), LOPAP (red), CLS (blue) and PTRMS (green). The same color code is also used in Figures 2, 

3 and 5. The vertical arrow in Figure 1 indicates the times when the cavity transmission through the clean chamber, I0(λ), was 

measured for ca. 10 min. 11 July is the only day for which the build-up of HONO was monitored during daylight conditions. 

The HONO mixing ratio increased after humidification of the bright chamber (for 48 min) and decreased subsequently when 

O3 (~40 ppbv) was introduced. At 9:15 hrs there is a marked but unexplained change in the data of HONO mixing ratios as 210 

measured by IBBCEAS in comparison to LOPAP. The increase in the noise of the IBBCEAS data occurred ca. 15 minutes 

before the addition of CO to the chamber at 9:30 hrs, which is neither expected to influence the HONO chemistry nor the data 

retrieval, even at high CO (~750 pbbv) concentrations (see Figure 1). Presently there is no obvious explanation for this behavior 

in the IBBCEAS measurement. Likewise the return to dark conditions at 15:33 hrs led initially to an unexpected increase of 

the HONO mixing ratio as recorded by the LOPAP instrument, but it was also observed by the IBBCEAS measurement. This 215 

observation was also made in other campaigns and will be briefly discussed in section 4.2. NO2 mixing ratios, as measured by 

CLS, increased gradually during humidification of the bright chamber and increased sharply when O3 was introduced, followed 

by a more gradual increase until MACR was added to the mixture at 11:51 hrs. The jump of the NO2 mixing ratio at 07:30 
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shows the effect when O3 was added actively to the chamber. Almost all NO was oxidised to NO2 at that time. Both CLD and 

CEAS show this effect. The observed temporary decrease of the NO2 concentration after the addition of MACR can be 220 

explained by a reaction sequence following the formation of OH from HONO: The primary oxidation step of the reaction of 

OH with MACR forms the peroxy methacryloyl radical (CH2=C(CH3)-C(O)OO), part of which further reacts with NO2 to 

form MPAN (peroxy methacryloyl nitrate, CH2=C(CH3)-C(O)OONO2). MPAN is thermally unstable with a small thermal 

decomposition rate of ~ 4.6×10-4 s-1 at 25oC (Roberts and Bertman 1992). Thus a thermal equilibrium is established from which 

NO2 is reformed after the initial MACR has been consumed (Fuchs et al. 2014). 225 

Concentrations of NO2 and MACR both appeared to stagnate when the roof was closed due to the absence of light-driven 

photo-chemistry. Finally the purging of the chamber with synthetic air removed all trace gases from the chamber.  

The experiments in October were designed to enable accurate mirror reflectivity calibration and intercomparison of LOPAP 

and IBBCEAS under unperturbed condition at sub-ppbv mixing ratios of HONO. The measurements demonstrate that the 

long-cavity IBBCEAS instrument at SAPHIR is capable of detecting HONO pptv levels without difficulty (Figures 2 and 3). 230 

3.2 Measurements on 5 October 2011 

After overnight flushing in the morning of 5 October,  NO2 was added to the chamber in steps of 250 pptv (at 6:30 hrs and 

6:50 hrs), 500 pptv (at 7:10 and 7:30), and 1 ppbv (at 7:50 hrs and 8:10 hrs). After subsequent humidification for 44 min 

(starting at 8:41 hrs) and the exposure to daylight at 9:27 hrs, HONO was formed at levels of up to 400 pptv. Finally, after 

closing the chamber roof (14:23 hrs), HONO was removed by flushing with zero air (starting at 15:31 hrs). The HONO data 235 

from the IBBCEAS and LOPAP setups, and the NO2 data from the IBBCEAS and CLS instruments showed outstanding 

agreement on that day (Fig. 2). 

Figure 2 

3.3 Measurements on 6 October 2011 

It is known that the photo-enhanced formation of HONO in the SAPHIR chamber can be described by an empirical function 240 

depending on relative humidity, solar irradiation and temperature (Rohrer et al. 2005). Minimal HONO production was thus 

achieved by only humidifying the chamber for 42 min after overnight flushing with zero air. At 12:18 hrs the chamber was 

exposed to daylight leading to the gradual formation based on vestiges of NOX on the chamber wall. The variation of 

temperature was limited to the natural variability. After a gradual increase the HONO mixing ratios leveled off at ca. 250 pptv 

before the chamber was eventually closed at 16:24 hrs. The correlation between the data obtained with IBBCEAS and LOPAP 245 

is rather satisfactory at these low levels. For NO2 there appears to be a slight offset between data from the IBBCEAS and CLS 

instruments with good overall agreement.   

Figure 3 
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4 Discussion of Instruments’ Performances 

4.1 IBBCEAS Instrument 250 

The main experimental uncertainties determining the quality of the IBBCEAS data reported here are systematic; they are: (a) 

the stability of the light source, (b) the in situ calibration of the mirror reflectivity, (c) the data analysis and concentration 

retrieval approach, and (d) the unspecified mechanical instabilities of the setup such as potential thermal drifts or deficiencies 

of the opto-mechanical components (Ruth et al. 2014). The latter become more critical with increasing cavity length since 

small changes in the optical alignment have a more severe influence on the instrument’s performance; see Varma et al. 2009. 255 

4.1.1 Lamp Stability 

Short-term intensity fluctuations are due to random spatial variations of the hot spot plasma arc (small arc jumps), whose 

effects on the optical alignment were minimised by an active quadrant detector control unit (Varma et al. 2009). As long as 

intensity fluctuations of the lamp do not show any spectral dependence in the wavelength range of interest, the resulting 

baseline changes can in principle be accounted for in the fit of eq (1) to the measured data. If the fluctuations are however 260 

accompanied by random spectral variation, the retrieval by SVD becomes increasingly difficult. Spatial jumps that were at the 

compensation limit of the quadrant detector were also noted during experiments leading to uncertainties in the baselines. One 

of these events may have occurred e.g. on 11 July at ~9:30 hrs. Difficulties in the mixing ratio retrieval due to lamp instabilities 

occurred sporadically during the measurements in the Summer, but became more frequent and for longer time periods after 

continued use of the lamp in the Autumn. For instance the measurement on 6 Oct (Figure 3) was affected by lamp stability 265 

issues, which is a sign of electrode aging and the main cause for the hot spot plasma arc to wander into a domain where the 

stabilization system is unable to fully compensate for the spatial displacement.  

An unexplained change in performance started approximately 20 min before the addition of 750 ppbv of CO on 11 July at ca. 

9:10 hrs (Figure 1). At that time the quality of the IBBCEAS data started to worsen, while the LOPAP performance remained 

largely unaffected (see Figure 1). A small increase in HONO mixing ratios was subsequently observed in comparison to the 270 

LOPAP and the noise of the IBBCEAS data was increased by roughly a factor of ~2. There are no obvious reasons for this 

observed behavior from a (photo)chemical point of view, since at the time the gas mixture was not altered. In open path cavity 

setups similar behavior can in principle be caused through increased scattering due to particle formation (Varma et al. 2009), 

but measurements of the particle number concentration showed no significant change on this occasion. Therefore one 

conceivable explanation may be that the hot spot arc in the Xe lamp may have moved to a steady location on the electrode 275 

where the control unit was at its performance limit to keep the arc steady. As the quadrant detector correction signal was not 

recorded, this is merely a tentative explanation of the sudden change of performance. Although there was an addition of CO a 

short time later it is not plausible that potential impurities in the CO (purity >99.9%) gas (or chemical reactions of same) might 

be the cause for this observation. LED-based IBBCEAS is generally less prone to sudden changes (Gherman et al. 2008) due 

to the higher stability of the light source, although slow drifts are still possible (Fouqueau et al. 2020). 280 
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4.1.2 Mirror Reflectivity and Calibration Aspects 

Retrieval of accurate mixing ratios by IBBCEAS requires the effective mirror reflectivity Reff to be known accurately as a 

function of wavelength. Calibration measurements were performed a few times over the course of the measurements presented 

here by introducing a known amount of NO2 into the dry SAPHIR chamber shortly after the cavity transmission of the clean 

and dry cavity, I0(), had been recorded. The effective reflectivity was retrieved with eq (1) using the known cross-section of 285 

NO2 and the mixing ratio from the CLS NOX monitor (e.g. using the measurements on 5th Oct 2011 where Reff = 0.9978 at 352 

nm and Reff = 0.9986 at 386 nm, see supplementary Figure S5). The lower limit of the absolute uncertainty (~11%)  is based 

on the accuracy of the NO2 cross-section (8%) and that of the NOX measurement (7%).  

The initial calibration measurement of Reff was also used to determine the loss, LLLO(), of an anti-reflection coated optic 

(referred to as "low loss optic", LLO), which was in turn used on a daily basis (in the morning) to determine the reflectivity in 290 

the clean chamber instead of using NO2 as calibration gas (see also supplementary Figures S4 and S6): 

 

𝑅eff(λ) = 1 − (
𝐼LLO

𝐼0 − 𝐼LLO

𝐿LLO(λ))                                                                     (2) 

 

In the transmitter unit the LLO (RLLO (375 nm) < 0.001, diameter 40 mm, parallelism 30'') was moved into and out of the cavity 295 

parallel to the mirror by means of an accurate translational stage with high reproducibility. Care was taken in designing the 

air-tight LLO compartment (Figure S1) where the optic was "parked" when not needed. The LLO was furthermore flushed 

with clean dry air while in the cavity to avoid (minimize) potential changes of its optical loss. When the LLO is used over the 

course of a simulation experiment, i.e. in a chamber with arbitrary gas mixture, the LLO measurements yield effective 

reflectivities that comprise extinction losses in the chamber at this particular time. Although only the Reff measured each 300 

morning in the clean dry and dark chamber was used to retrieve the concentrations of the target species (eq (1)) for the entire 

day, repeated introductions of the LLO into the cavity over the course of the day was used for checking whether misalignments 

or potential drifts of the cavity had occurred. 

 

4.1.3 Data Evaluation 305 

In order to judge the quality of the data evaluation an example of an IBBCEAS extinction spectrum and the corresponding fit 

of eq (1) to the measured data are shown in Figure 4 (uppermost panel). The data for this example were chosen because on 11 

July 2011 HONO, NO2 and MACR were simultaneously present in the chamber. The different panels in Figure 4 show the 

individual absorption contributions of the three species to the measured spectrum together with the polynomial background 

determined in the fit analysis. The lowermost panel shows the fit residuals, , illustrating the appropriate use of the reference 310 

absorption spectra of the three target species in this measurement.  
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4.1.4 Detection Limits 

For individually measured spectra a minimum extinction coefficient of 9.310–10 cm–1 was determined for an acquisition time 

of 1 min (assuming a 1:1 signal-to-noise ratio), which corresponds to min = 7.210–9 cm–1 Hz–1/2 (1 For a series of 

measurements (see supplementary Figure S7) this translates into a measured 3 limit of detection (LOD) of the IBBCEAS 315 

instrument for a 1 min acquisition time of ~39 pptv for HONO, ~114 pptv for NO2, and ca. 510 pptv for MACR in the 352-

386 nm wavelength range.   

In comparison to the IBBCEAS instrument, the LOPAP instrument at SAPHIR featured a 3 LOD of 10 pptv of HONO in 

1 min. The LOD for NO2 by the standardised chemiluminescence  technique at SAPHIR also compares favourably with a 3σ 

LOD of 13.4 pptv of NO2 for a 1 min acquisition time with an overall accuracy of 7 % (Rohrer and Brüning 1992, Fuchs et al. 320 

2010) (the CLS detection limit for NO is 6.7 pptv). Mixing ratios of volatile organic compounds such as methacrolein can be 

only compared to data acquired with PTRMS, whose LOD for MACR is 8.5 pptv in 1 min (accuracy 8 %). 

An overview of (2) detection limits for HONO of previously published IBBCEAS instruments was recently given by Jordan 

and Osthoff 2020. The 2 detection limit of 26 pptv for HONO in 1 min presented here compares favourably to the IBBCEAS 

works by Gherman et al. 2008, Hoch et al. 2012, Wu et al. 2012, Donaldson et al. 2014, Scharko et al. 2014, Min et al. 2016, 325 

Nakashima and Sadanaga 2017, Duan et al. 2018, and Jordan and Osthoff 2020 - see Table 1 in the AMT article by Jordan and 

Osthoff 2020. It should be noted, however, that some of the quoted detection limits were established under field conditions, 

which bears challenges that are different from experiments with a large scale simulation chamber. The rather competitive 

detection limits of the current setup are a result of the substantial cavity length, despite the fact that the effective cavity mirror 

reflectivity in this work was lower than in all other instruments reported. 330 

Figure 4 

4.2 LOPAP Instrument 

In a previous DOAS-LOPAP intercomparison (Kleffmann et al. 2006) the addition of ozone triggered issues concerning the 

use of proper reference data in the DOAS evaluation procedure at ppbv levels of HONO. This sort of difficulty was not 

observed with IBBCEAS at sub-ppbv mixing ratios of HONO. 335 

However, when switching from illuminated to dark conditions the LOPAP instrument regularly showed an increase of HONO 

concentrations, while the IBBCEAS detector does not seem to follow this trend as strongly and reproducibly; see Figure 1 (11 

July 2011) or Figure S8, for example. The systematically increasing HONO mixing ratios measured by the LOPAP instrument 

upon closing the roof and generating dark conditions was also observed on a few other days during the summer campaign, e.g. 

on 10 and 15 June (see supplementary Figure S8). The reason for this behavior is not fully understood yet. An effect of the 340 

presence of organic reaction products from the oxidation of mathacrolein that cause an interference with the LOPAP technique 

upon stopping photolytic processes can be ruled out, because the “effect” was also observed in experiments with a clean 

humidified chamber solely filled with high purity synthetic (zero) air. A possible explanation may be based on the changing 
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homogeneous and heterogeneous production rates of HONO versus its destruction rates under bright and dark conditions. For 

daytime conditions the steady state HONO mixing ratio is mainly determined by photolysis of a yet unknown nitrogen 345 

containing precursor adsorbed at the Teflon walls or dissolved in the surface water layer on the Teflon film versus the 

photolytic destruction of HONO into OH and NO. In the dark (closed) humidified chamber HONO can still be produced, but 

predominantly through heterogeneous reactions with formation rates being at least a factor of ~10 smaller than under 

illuminated conditions (i.e. with the roof open). Even though closing the roof stops efficient HONO production it also 

eliminates the photolytical loss entirely, while HONO heterogeneous production within the aqueous phase on the chamber 350 

walls is still active (albeit  its slowly decreasing efficiency). This can lead to changing the equlibrum such that the subsequent 

outgassing of HONO from the aqueous phase on the Teflon film can temporarily dominate the HONO production into the gas 

phase until the initially HONO-saturated aqueous phase also gets depleted leading to the eventual decrease in HONO mixing 

ratios (Karl, 2004). The inlet of the LOPAP instrument is much closer to the chamber wall (ca. 30 cm) in comparison to the 

region probed by IBBCEAS, which averages across the whole length of the chamber near its center. Thus the effect is more 355 

likely to be apparent in the LOPAP data than in the IBBCEAS data. This tentative explanation of the observed trend upon 

closing the roof of the chamber warrants further investigation. 

4.3 CLS and PTRMS Instruments 

The CLS and PTRMS data were used here as reference guideline for the measurements and not for scrutinizing the performance 

of the respective instruments. Nevertheless, some discrepancies between IBBCEAS, CLS and PTRMS were noted and are 360 

outlined here.  

 

CLS: Mixing ratios of NO2 measured by CLS and IBBCEAS frequently appeared to differ somewhat during the humidification 

of the dark chamber. The CLS instrument appears to systematically record higher NO2 mixing ratios than IBBCEAS upon 

humidification of an initially clean chamber without the obvious presence of NO2. Examples of the observed behavior are 365 

shown in Figure 5 (see also Figure S8). 

Figure 5 

There are two possible scenarios that may explain these observations: (a) It could be an artefact in the chemiluminescence 

device, which may be due to a surface effect of the blue light converter (BLC). Switching from a dry to a humidified chamber 

leads to a severe change in the surface conditions of the BLC, which releases either NO or a substance that mimics an NO 370 

signal for some time until a new equilibrium has been reached. This type of behavior has occurred before in measurement 

campaigns at SAPHIR, where small temporary discrepancies between model calculations and measurement were observed. 

The nature of the potentially released substance is unclear. HONO would be more likely to stick to the walls rather than to be 

released unless heterogenous reactions are at play leading to the formation of NO. The effect is transient and vanishes after a 

short time. The fact that rapidly changing water vapor concentrations can affect the instrumental background of CLS detectors 375 

and lead to a non-trivial memory effect that cannot be easily corrected retrospectively has also been reported recently in the 
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literature (Nussbaumer et al. 2021). (b) A small contamination of the milli-Q water and differences in the sample quality used 

for humidification cannot be fully ruled out. Those contaminations have also been observed before. The increase in the NO2 

signal upon humidification is supported by a significant increase in the NO signal (~120 pptv) observed by CLS. However, on 

10 June 2011 this increase seems to be over after ca. 15 min while the humidification is still ongoing. The reason why the 380 

IBBCEAS instrument does not detect the increase in NO2 if it is due to contamination is also unclear.  

 

PTRMS: After introduction of MACR to the chamber on 11 July, initially higher mixing ratios were recorded by PTRMS 

rather than by IBBCEAS (between 11:50 hrs and ca. 15:30 hrs). The mixing ratios measured with the two instrument gradually 

approach very similar values over the said time period until they agree rather well when the roof of the chamber was closed. 385 

The reason for this behavior is not clear since no obvious interference in this period was obvious.   

 

4.4 Correlation of Data Obtained by Different Instrumental Methods 

For the combined data sets of the instrument intercomparisons an overall good agreement for both trend and absolute mixing 

ratios was observed between IBBCEAS and the established instruments at SAPHIR as illustrated in the correlation plots in 390 

Figures 6 and Table 1 (see also Figs. 1-3). The best agreement is observed on 5 Oct 2011 for both HONO and NO2, which may 

be attributed to the fact that the least amount of interfering species were present in the chamber at that time. R coefficients 

range from 0.930 to 0.994 for HONO and between 0.937 and 0.992 for NO2. An R coefficient of 0.962 is found for the single 

measurement of MACR. 

5 Conclusion 395 

In 2011 an incoherent broadband open-path cavity-enhanced absorption spectroscopy (IBBCEAS) instrument was established 

at the SAPHIR chamber in Jülich and optimized for the detection of HONO and NO2 in the near UV region (352-386 nm) 

using a bright hot-spot Xe-arc lamp and a UV-enhanced CCD detector. Based on an effective reflectivity of 0.9978 <  Reff  < 

0.9986 and a 20 m open-path cavity a 2 detection limit of 26 pptv for HONO and 76 pptv for NO2 was achieved for an 

integration time of 1 min. Methacrolein was also detected at mixing ratios below 5 ppbv. These are highly competitive detection 400 

limits in comparison to those reported in the recent literature. The IBBCEAS instrument’s performance for HONO and NO2 

detection was compared to that of long-path absorption photometry (LOPAP) and chemiluminescent NOX detection, with R 

coefficients range from 0.930 to 0.994 for HONO, and between 0.937 and 0.992 for NO2, respectively. At low concentrations 

however, and especially upon humidification of the chamber, a small temporary water interference on NO2 mixing ratios were 

observed in CLS measurements which was not observed in the IBBCEAS data. 405 
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Table 1. Comparison of correlation plot data. N: number of data points, a and b: regression coefficients, σ (a) and and σ (b): bootstrap 685 

errors of the linear square fit y = a + bx (where y represent IBBCEAS data [pptv] and x the data [pptv] by either LOPAP, CLS or 

PTRMS), r2: Pearson linear correlation coefficients. 
 

date N a [pptv] σ(a) [pptv] B σ(b) r2 

HONO: IBBCEAS vs. LOPAP 

11 July 553 11.1 2.5 0.915 0.013 0.8844 

12 July 360 –0.3 1.3 0.883 0.017 0.8645 

5 Oct 299 –16.2 1.1 0.992 0.007 0.9885 

6 Oct 394 –26.1 2.9 1.020 0.013 0.9408 

all 4 days 1668 –8.4 0.9 0.973 0.005 0.9489 

NO2: IBBCEAS vs. CLS 

11 July 708 –157 11 1.085 0.012 0.9253 

12 July 378 –56 5 1.090 0.019 0.9415 

5 Oct 531 15 7 1.050 0.011 0.9837 

6 Oct 634 3 2 1.385 0.019 0.8786 

all 4 days 3011 –29 3 1.031 0.007 0.9700 

MACR: IBBCEAS vs. PTRMS 

11 July 657 103 27 0.947 0.010 0.9623 
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 690 
Figure 1: Left panels: Time-dependent HONO, NO2 and MACR mixing ratios measured by IBBCEAS (black trace) at SAPHIR on 

11 July 2011. Dashed vertical lines indicate changes in the chamber conditions according to the experimental protocol: Overnight 

flushing of chamber with zero air stopped (5:03), roof opened (5:05), start of humidification (5:30), end of humidification (6:18), 40 

ppbv O3 (7:30), 750 ppbv CO (09:30), MACR (11:51), roof closing (15:33), flushing with zero air started (16:00). IBBCEAS data 

taken in the near-UV region of the spectrum (352-386 nm) are compared to LOPAP (red), CLS (blue) and PTRMS (green) data. 695 

The vertical black arrow indicates the time when I0 was measured (generally for 10 min). Right panels: Correlation plots of two 

instruments being compared against IBBCEAS. The dashed line represents the identity, the colored solid lines are linear regressions 

to the data. Results are listed in Table 1. 
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 700 

 

 

 

Figure 2: Left panels: Time-dependent HONO and NO2 mixing ratios measured at SAPHIR on 5 October 2011. Dashed vertical lines 

indicate changes in the chamber conditions according to the experimental protocol: Overnight flushing stopped (5:55), 250 pptv NO2 705 

(6:30 and 6:50), 500 pptv NO2 (7:10 and 7:30), 1 ppbv NO2 (7:50 and 8:10), start humidification (8:41), stop humidification (9:25), 

roof opening (9:27), roof closing (14:23), flushing started (15:31). IBBCEAS data taken in the near-UV region of the spectrum (352-

386 nm) are compared to LOPAP (red) and CLS (blue). The vertical black arrow indicates the time when I0 was measured (generally 

for 10 min). Right panels: Correlation plots of two instruments being compared against IBBCEAS. The dashed line represents the 

identity, the colored solid lines are linear regressions to the data. Results are listed in Table 1. 710 
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Figure 3: Left panels: Time-dependent HONO and NO2 mixing ratios measured at SAPHIR on 6 October 2011. Dashed vertical lines 

indicate changes in the chamber conditions according to the experimental protocol: Overnight flushing stopped (6:04), start 

humidification (10:47), stop humidification (11:29), roof opening (12:18), roof closing (16:24). IBBCEAS data taken in the near-UV 715 

region of the spectrum (352-386 nm) are compared to LOPAP (red) and CLS (blue) data. The vertical black arrow indicates the 

time when I0 was measured (generally for 10 min). Right panels: Correlation plots of two instruments being compared against 

IBBCEAS. The dashed line represents the identity, the colored solid lines are linear regressions to the data. Results are listed in 

Table 1.  
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 725 

Figure 4: Example of the extinction coefficient spectrum, (), measured with IBBCEAS at SAPHIR in the wavelength range 352-

386 nm with an integration time of 1 min, taken at 13:00 hrs on 11 July 2011. Uppermost panel: measured extinction (black), fit of 

eq (1) to the extinction (cyan). Lowermost panel: Absolute fit residuals  = fit – exp. HONO, NO2 and MACR mixing ratios were 

retrieved as nHONO = 0.160 ppbv, nNO2 = 0.586 ppbv and nMACR = 8.055 ppbv, respectively. The corresponding contributions and the 

polynomial baseline are shown in the middle panels. The absolute wavelength scale was calibrated with a low-pressure Ne pen ray 730 

lamp. O2-O2 absorption at ~360 and ~380 nm not relevant as evident from the residuals in the lowermost panel. 
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 735 

 
Figure 5: Examples of the small increase of NO2 mixing ratios upon humidification in the dark chamber measured with CLS (blue 

dots) in comparison to those measured with IBBCEAS (black dots): (a) 10 June 2011: CO2 addition (4:53), start of humidification 

(5:52 - vertical solid blue line), ozone addition (6:36), roof opened (6:46), isoprene addition (7:01). (b) 17 June 2011: Flushing of 

chamber stopped (04:58), start of humidification (05:45), end of humidification (06:25), O3 addition (06:30) in dark chamber, CO 740 

addition (06:35), roof opened (07:36). Vertical solid arrows indicate the time of the zeroing measurement (I0). 
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Figure 6: Correlation plots of two instruments of the entire data set from the intercomparison. The dashed line represents the 750 

identity, the coloured solid lines are linear regressions to the data (see also Table 1).  
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